
influence is especially large for cooled surface if its temperature decreases downstream. 
Consequently, the application of such a temperature distribution is more effective for laminar- 
ization compared to uniformed distribution. 
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EFFECT OF SUCTION ON LAMINAR COMPRESSIVE FLOW AND HEAT TRANSFER 

CLOSE TO A DISK ROTATING IN A GAS 

V. D. Borisevich and E. P. Potanin UDC 532.526.75 

Suction for gas flowing over a wall may be used to combat flow instability in the region 
of the leading edge of a wing [I], and the nature of flow destabilization in which there is 
similar dew~.lopment of instability in the boundary layer on a rotating disk [2]. Suctioning 
of the boundary layer flowing over bodies or rotating surfaces is also an effective method 
for intensifying heat and mass transfer processes [3]. A knowledge of hydrodynamic and ther- 
mal characteristics of the boundary layer on a rotating disk is also necessary in a whole 
series of other technical situations [4]. 

In order to study uncompressed laminar flow close to a rotating disk with different ex- 
ternal conditions, a method has been used successfully for averaging nonlinear inertial terms 
in equations of motion over the thickness of a boundary layer (the Slezkin-Targ method) mak- 
ing it possible to obtain analytical relationships for flow characteristics required in carry- 
ing out engineering calculations [5-8]. In the current work on the basis of a modified 
Slezkin-Targ method a study is made of a laminar boundary layer on an infinite disk rotating 
in a gas wi?h presence of uniform suction from its surface taking account of medium compres- 
sibility. A process is considered for heat exchange between the disk and the external flow. 
Calculations are made for the thickness of hydrodynamic and thermal boundary layers, and also 
values of the coefficient of the disk resistance moment c M and Nusselt number Nu in relation 
to suction parameter and the ratio of temperature in the external flow and in the disk. It 
is demonstrated that suction markedly affects the profile of hydrodynamic flow at the disk 
surface, increasing its resistance moment and heat emission. Results of calculating c M are 
compared with known data for accurate solution of equations for a boundary layer on a rotating 
disk in the case of an incompressible liquid. 

i. Ignoring viscous dissipation [5, 9] equations for spatial hydrodynamic and thermal 
boundary layers on a rotating disk in generally accepted notations are written in the form 

P u - a T + w  oz - Or +77  ~l-aT; 

( ov &' ~L) o ( a v )  (1 2) 
P U-gTr+W-gT+ =-aT ~1-57; 

o 0 (pru,) ~--- O; 
Or (pru) + ~'a (1 .3 )  
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O p  _ 0; (1.4) 
Oz 

pep (u  Or w Or 

.RT 
P : P -~--" ( 1 , 6 )  

Here u, v, and w are radial, azimuthal, and axial velocity components for the medium; p is 
pressure; 9 is density; T is temperature; Cp is specific thermal capacity at constant pres- 
sure; p is molecular weight of the gas; R is universal gas constant; H and z are coefficients 
of dynamic viscosity and thermal conductivity for the medium; z is axial coordinate reckoned 
from the disk surface. 

System of equations (1.1)-(1.6) should be solved with boundary conditions 

z =  O : u  = O, v =  o r ,  w = - - k ,  T = For 

z - - - ~ o o : u - - ~ O ,  v---~O, T'--~T1, 

where co is disk rotation angular velocity; k is suction velocity at its surface; T O is disk 
temperature; T I is temperature of the gas in the external flow. 

Let the temperature be independent of radial coordinate [4]. As is normal, we also ig- 
nore the change in specific heat capacity Cp. 

Similar to [i0], we introduce a Dorodnitsyn transform 

Z=iP!~) dz (1.7) 
Pl 

0 

(Pl is gas density in the external flow). 

Then the expression for transforming the axial velocity component w I takes the form 

wl = wp/pl + uOzlOr. ( 1 . 8 )  

A s s u m i n g  t h a t  u = r F ( Z ) ,  v = r G ( Z ) ,  T = T O + (T  1 - T o ) 0 ( Z ) ,  8 p / 8 r  = 0 ,  q = q l T / T 1 ,  
• = xiT/Tl (nl and • are coefficients of dynamic viscosity and thermal conductivity in the 
external flow) and using (1.1)-(1.8), we obtain 

F 2 + wlF' - -  G 2 = v i F " ;  

2FG + wiG' = v l G " ;  

t 
2 F  + wz = 0 ;  

(1.9) 

(1.10) 

(i.ii) 

wlO' = %10"- ( 1 . 1 2 )  

Here Xl = xl/(plCp); vl = NI/Pl; a prime indicates differentiation for Z. 

In order to solve system (1.9)-(1.12) we introduce the notation w I = w 0 - k I, in which 
kl = P0k/Pl, P0 is gas density at the disk surface. 

By separating in the right-hand parts of the equations terms proportional to k I, system 
(1.9)-(1.12) is transformed to 

(F 2 + Wo F ' ~ -  G 2) = F" + "7-; 

m G t (2FG + woG' ) = G" + T ;  

i 

2 F  + w o = 0; 

(1.13) 

(1.14) 

(1.15) 

where s = ~i/ki; s = x1/kl �9 

I Wo 0, O" O' X'-7 = + - -  ( 1 . 1 6 )  l l ~  
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By substituting terms in the left-hand parts of Eqs (i.13), (1.14) and (1.16) by their 
average values through the thickness of the hydrodynamic 6 i and thermal h i boundary layers 
taking account of (1.15), we have 

61. 61 

%i ~ F2dZ - -  G~dZ --  + - -  �9 
iSi - -  - ~  l d Z ' 

o o 

(1.17) 

61 

4 S F G d Z - -  d~G t d6 ( 1 . 1 8 )  
h a l  - dZ2 + T-J-E; 

0 

2 i ~ ( i  ) dO d20 t dO FdZ -YU dZ = ~ + ~ -EE. 
%ihi o 

(1.19) 

Formally Eqs. (1.17)-(1.19) coincide with system (5) from [8], devoted to studying the case 
of an incompressible liquid. Therefore, for values of F, G, and 8 it is possible to use ex- 
pressions (7)-(9) from the work indicated, in which coordinate z is replaced by function 

= ~ P!~ ~. Z 
J PI 
0 

With p = Pl = P0 = const and k + 0 (s § ~) relationships for radial and circumferential 
velocity component are transformed into a Targ solution described by power polynomials [5]. 
In the other limiting case of considerable suction (k § ~, s § 0, s § 0) the expressions 
for F, G, and 8 coincide with accurate solution of boundary {ayer equations [8]. 

In order to determine unknowns AI, 41, and h I it is necessary to solve a system of equa- 
tions similar to set (10)-(12) in [8] with p = 0. 

For a changeover to actual values of 4 r and h r it is necessary to use the relationships 

(.B_~ / 1/2 t 

6 o n + [exp(-- / )~f~p(-- / ) - - i ]  exp (--/) exp(--d Pr)dPr I + ; " 

h r ~ Pr l n I. ~ exp (-- f) 1 + + ]  i (1 .21)  
h 0 =-~- + [exp (-- /) + f exp (--f) -- l] _ exp(--/) f 

where 60 = 6z(~/vz)II2; h 0 = hz(~/vl)ll2Pr; A 0 = Az(vz/w2); d = k060n; f = k0h0n; n = Tz/T0; 
k 0 = k(i/mvx)zl2; Pr = vx/Xl is Prandtl number. 

Calculated dependences for values of 40 and h 0 on suction parameter k 0 for n = TI/T 0 = 
0.5; 0.75; i; 1.5; 2 (lines 1-5) and Pr = 1 are presented in Figs. 1 and 2. As an example 
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TABLE 1 

CM 

! 

I 
o 2 *o 

Fig. 3 

Nu 

n ko 

0.1 0.5 1.0 2.0 3,0 4,0 

0,5 
0.75 
i,0 
t:5 
2,0 

0.436 
0,449 
0.463 
0.49i 
0.520 

0.550 
0.644 
0.7i7 
0.906 
iAi2 

0.7i7 
01906 
11112 
1,560 
2,033 

i .li2 
i:560 
2:033 
3,012 
4,006 

t.560 
2,275 
3.0i2 
4,504 
6~002 

2 ~033 
3.0i2 
4.006 
6.002 
8,00i 

similar dependences are shown by broken lines for dimensionless actual thicknesses of hydro- 
dynamic and thermal boundary layers found in accordance with (1.20) and (1.21) with n = 0.5. 

Suction causes an additional inflow from the outer region towards the disk of gas with 
a rotation velocity and temperature differing from values which the medium has close to the 
surface. This leads to a reduction in thickness of hydrodynamic and thermal boundary layers 
with an increase in parameter k 0 characterizing suction intensity. An increase in the ratio 
of temperature in the external flow T I and in the disk T o (n = TI/T 0) with uniform stable 
conditions promotes an increase in the efficiency of suction as a result of a relative in- 
crease in auctioned gas density, which also leads to a drop in boundary layer thickness. 

It is noted that the approximate method used for calculation is based on averaging the 
left-hand parts of Eqs. (1.13), (1.14), and (1.16) through the thickness of the hydrodynamic 
and thermal boundary layers. For this reason its accuracy with an increase in k 0 increases 
due to a relative reduction in the role of average terms [8]. By using the relationship 
(1.20) found, (7) from [8], and continuity equation (1.3), it is possible to obtain an ana- 
lytical expression connecting axial flow at a distance from the disk surface and parameter n. 

2. By using an expression for azimuthal velocity component, we calculate the moment of 
frictional force M 0 operating on one side of the surface of a disk of radius R0: 

B 0 

M~ 2n~1 .f r31 dr -- 250 It --  (i + d) exp (-- d)] 
0 

G i v e n  i n  F i g .  3 a r e  d e p e n d e n c e s  f o r  t h e  c o e f f i c i e n t  o f  f r i c t i o n  moment c M = 2Mo/ 
v q l R o 4 ( m 3 / v z )  z / :  on k o w i t h  n = 2;  1 . 5 ;  1 ;  0 . 7 5 ;  0 . 5  ( l i n e s  1 - 5 ) ,  a n d  shown by a b r o k e n  
line are the results of calculating c M obtained on the basis of accurate solution of equa- 
tions for the boundary layer with large k 0 and n = 1 [4]. It can be seen that suction sharp- 
ly increases disk resistance, and with high values of k 0 the relationship c M = k0n is valid. 
An increase in coefficient for friction moment with an increase in parameter n in the case of 
k 0 ~ 0 is explained by an increase in the efficiency of suction as a result of an increase 
in auctioned gas density. In the other limiting case (k 0 ~ 0) the value of c M is independent 
of n. This is connected with the situation that with disk cooling a reduction in dynamic 
viscosity close to its surface is compensated by an increase in the axial gradient of azi- 
muthal velocity caused by a drop in actual boundary layer thickness. The calculated value 
of c M equals 0.579 with k 0 = 0 almost coincides with the results in [i0]. 

210 



TABLE 2 

Pr 

i.0 
0,95 
0.9 

hJPr 

4.86i 
5.0i0 
5.i83 

Nu 

0.4i5 
OA02 
0.389 

IYU* ] Pr 

0.400 / 0.85 
0.389 1 0.8 
0,377 0175 

h0/Pr 

5.389 
5.649 
5,95i 

O,374 
0,357 
o:341 

Nu* 

0,365 
0.353 
0~340 

3. Now we estimate local Nusselt number characterizing the intensity of heat flow q = 
-mST/Sz in the disk surface. By using expression (9) from [8], we find that 

Nu (To ~ ) ~ 1  = ho[exp(- - [ )~/exp(- -  f ) -  l]" 

R e s u l t s  o f  c a l c u l a t i n g  Nu f o r  d i f f e r e n t  v a l u e s  o f  k 0 and n w i t h  Pr = 1 a r e  g i v e n  in  T a b l e  1. 
As f o l l o w s  f rom t h e  dependences  o b t a i n e d ,  s u c t i o n  p r o m o t e s  an i n c r e a s e  in  d i s k  h e a t  t r a n s f e r .  
With l a r g e  s u c t i o n  p a r a m e t e r s  t h e  v a l u e  o f  Nu emerges  i n t o  an a s y m p t o t e  Nu = Prk0n .  

P r e s e n t e d  in  Tab le  2 a r e  d a t a  f o r  c a l c u l a t i n g  t h e  d i m e n s i o n l e s s  t h i c k n e s s  o f  t h e r m a l  
b o u n d a r y  l a y e r  h 0 / P r  and Nu f o r  d i f f e r e n t  v a l u e s  o f  Pr w i t h  k 0 = 0 and n = 1. Also  g i v e n  
h e r e  f o r  c o m p a r i s o n  a r e  t h e  r e s u l t s  o f  c a l c u l a t i n g  Nu* from [ 1 1 ] .  

I n  c o n c l u s i o n  we n o t e  t h e  s i m p l i c i t y  and c l a r i t y  o f  t h e  a p p r o a c h  used  in  t h e  p r e s e n t  work 
t o  a n a l y z i n g  b o u n d a r y  l a y e r  e q u a t i o n s ,  making i t  p o s s i b l e  t o  o b t a i n  a n a l y t i c a l  e x p r e s s i o n s  
f o r  h y d r o d y n a m i c  and t h e r m a l  c h a r a c t e r i s t i c s  o f  compres sed  f l o w ,  and a l s o  v e l o c i t y  and tem- 
p e r a t u r e  p r o f i l e s  o v e r  t h e  whole  r a n g e  o f  change  in  p a r a m e t e r  kQ. 
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